Dérivée et vitesse

A. Vitesse

On considère un mobile qui se déplace sur un axe (x'x). A chaque instant t, la position du mobile est donnée par son abscisse x qui est donc une fonction de t; on posera x = f(t). Que peut-on dire de la vitesse de ce mobile ?

Nous pouvons trouver facilement sa vitesse moyenne entre deux instants t_0 et t_1 : il s'agit du quotient distance parcourue donc $f(t_1) - f(t_0)$ sur durée donc $t_1 - t_0$; d'où $v_m = \frac{f(t_1) - f(t_0)}{t_1 - t_0}$.

Que devient cette vitesse moyenne lorsque t_1 tend vers t_0 ?

En posant $t_1 = t_0 + h$, cela revient à chercher la limite de $\frac{f(t_0 + h) - f(t_0)}{h}$ lorsque h tend vers

0. Si f est dérivable en t_0 , cette limite existe et est égale à la dérivée de f en t_0 , soit $f'(t_0)$. On l'appelle vitesse instantanée à l'instant t_0 .

Conclusion:

Si la position d'un mobile est donnée par une fonction dérivable f, sa vitesse instantanée est donnée par la fonction f'.

Deux cas particuliers

Mouvement uniforme: la vitesse est constante égale à v_0 ; la fonction f qui donne la position du mobile est donc de la forme $f(t) = v_0 t + C$. Si à l'instant 0 la position du mobile est x_0 , on trouve que $f(t) = v_0 t + x_0$.

Mouvement uniformément accéléré: la vitesse instantanée est une fonction affine du temps, on a donc v = at + b. La fonction f qui donne la position du mobile est donc de la forme $f(t) = \frac{a}{2}t^2 + bt + c$.

B. Loi de la chute des corps

Lorsqu'on laisse tomber un objet sa vitesse augmente proportionnellement au temps de la chute (voir cours de Physique). Il existe donc un coefficient g tel que v = gt. Des mesures physiques indiquent que $g \approx 9,81$. On se trouve en présence d'un mouvement uniformément accéléré.

- 1- Quelle est la fonction qui donne la distance parcourue en considérant que l'objet est laché à l'instant 0 et qu'il se trouve alors au point d'abscisse 0 ?
- 2- Si on lache l'objet d'une hauteur de 20m, quelle sera la durée de sa chute ? Quelle sera sa vitesse au moment où il atteint le sol ?

Application: mesurer la profondeur d'un puits avec un chronomètre.

On lache un objet et on mesure le temps mis avant d'entendre le « plouf ». Sachant que le son se déplace à la vitesse constante de 300m/s et qu'on a entendu le « plouf » après 1,5s, quelle est la profondeur du puits ?